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Abstract

Sparse linear solvers account for much of the execution
time in many high-performance computing (HPC) applica-
tions, and not every solver works on all problems. Hence
choosing a suitable solver is crucial step for an efficient
application. Unfortunately, the best solver cannot be deter-
mined during the application development. Experiments on
finding best suitable solver require a plug and play mecha-
nism.

This work is part of the Common Component
Architecture (CCA) [21] effort on designing a common in-
terface among various parallel high performance linear
solver libraries, hence componenizing them and enabling
dynamical switching. The implementation of this inter-
face provides a CCA toolkit and is reusable under CCA-
compliant framework such as Ccaffeine[15].

1 Introduction

Linear system solvers are ubiquitous in scientific appli-
cations, and both iterative and direct methods play impor-
tant roles in solving the large-scale systems of linear equa-
tions that arise in applications. The linear system is typ-
ically written as Ax = b where A is the coefficient ma-
trix, b is the given right hand side vector, and x is the un-
known vector to be solved. Although present in all lin-
ear solvers, the matrix may be stored in a variety of data
structures and rarely is stored as a single 2D array. While
the linear solver packages provided by several national lab-
oratories and universities are used widely in the scien-
tific computing community, no single package is optimal
or even works in all cases. E.g., a nonlinear PDE solver
may generate a sequence of linear systems which may have
widely varying characteristics and require different solution
methods. A mechanism facilitating switching the solvers
is needed for scientific application code which often has
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deeply embedded linear solvers. This is particularly true
for HPC distributed memory parallel codes, which require
clearly identifying the distribution of the linear system’s
data across processors. Minimizing the required applica-
tion code changes can alleviate the difficulty of changing
solvers as the problems change. Similar to the way Mes-
sage Passing Interface (MPI) [24] provides a portable inter-
face to multiple underlying communication libraries, a com-
mon linear solver interface spanning multiple solver pack-
ages can be developed to meet these requirements.

A linear solver interface is also needed for the increas-
ingly important area of model coupling. E.g., fusion energy
simulations are now integrating codes that model different
physics of a fusion reactor [28]. The constituent codes typ-
ically assume some mode decoupling to get models that are
computationally feasible. Coupling the codes may involve
all of the modes from each constituent code, and may also
introduce intermediate modes that do not appear in any of
the physics sub-models[18]. A linear solver interface can
help in creating solvers for the integrated fusion simulation
that combines separate codes, and enable the usage of each
code’s native and specialized solvers for the subproblems
corresponding to each physics sub-model.

This paper identifies the design issues in creating a sin-
gle software interface LInear Solver Interface (LISI) span-
ning a broad range of HPC linear solvers. A linear solver
component using a draft LISI specification for the interface
has been written, providing multiple implementations in-
cluding software from Terascale Optimal PDE Solvers —
a SciDAC ISIC (TOPS), Trilinos, and SuperLU. Because
interfaces are defined using Scientific Interface Definition
Language (SIDL) [30], the Babel compiler from Lawrence
Livermore National Laboratory (LLNL) provides language
interoperability for the interfaces. In particular Babel cre-
ates bindings for Fortran 77, Fortran 95, C and C++, Java,
and Python, the languages most commonly used in high-
performance computing. Some terminology first: develop-
ers sometimes refer to the primary iteration as the solver and
the preconditioner is a transform to make the linear system
easier to solve. Others focus on the preconditioner (which



typically takes the most time in a solve), and call the itera-
tive phase iterative refinement. In this paper the first termi-
nology is used.

2 Problem Statement

Although a large number of sparse linear solver packages
are available [22], none can guarantee solving the full range
of linear systems encountered in applications. Some pack-
ages focus on particular class of problems and provide ef-
ficient solvers for them. High Performance Preconditioners
(HYPRE) [6] has preconditioners and solvers emphasiz-
ing multi-level methods, featuring parallel multigrid meth-
ods for both structured and unstructured grid problems.
Portable, Extensible Toolkit for Scientific Computation
(PETSc) [17] and Trilinos [26] are general purpose pack-
ages, but with different sets of iterative solver methods and
preconditioners. SuperLU [33, 32] is a direct solver for LU
factorization using sparse Gaussian elimination and is good
for non-symmetric nonsingular linear system. MUltifrontal
Massively Parallel sparse direct Solver (MUMPS) [10] is
a parallel sparse direct solver using a multifrontal method.
Iterative and direct solvers each have advantages and disad-
vantages. Iterative methods may converge too slowly or not
at all, and the time required to solve a linear system is not
always possible to determine analytically, particularly for
non-symmetric and highly non-normal [31] matrices. Di-
rect methods are more predictable but may require exces-
sive memory to hold a full factorization. Although com-
monly used for robustness, a direct solver may fail in some
cases where an iterative solver succeeds. E.g., a Krylov sub-
space solver can handle a rank-deficient coefficient matrix
in a consistent linear system, provided the initial residual
lacks any components in the null space of the coefficient
matrix.

2.1 Switching solvers

Historically most HPC applications were written from
the ground up for a single purpose with little reuse of ex-
isting codes. When built using HPC solver packages, ap-
plications can be so tightly coupled with them that it is
hard to change to another underlying solver library. But ap-
plication requirements may change with time, adding new
physics to underlying models or being applied to new sets
of problems. Being able to change out easily the solver im-
plementation used is important. Because application codes
are constantly evolving and changing, minimizing the num-
ber of lines of code that must be changed to swap solvers
is critical. As an example, in fusion energy simulations
the extended magnetohydrodynamics code M3D [8] uses
PETSc’s sparse linear solver KSP and has at least 767 lines
of code in 67 subroutines directly making calls to PETSc

KSP solver. The radio frequency heating code AORSA [2]
has 41 lines of code in 5 subroutines that interface with its
underlying solver (ScaLAPACK [20]). A single shared lin-
ear solver interface would in principle allow exchanging the
underlying solvers with no changes in the application code.
Some CCA frameworks like Ccaffeine [15] even allow dy-
namic run-time swapping of components. Switching to a
different solver library also has a learning curve, particu-
larly when the solvers are heavily parameterized and the
ways of specifying those parameters vary widely. At least
three groups of users can use the proposed LISI. Numerical
linear algebraists need to have low level parameter access
while application users typically do not want to deal with
parameter settings. Computer scientists often bridge appli-
cations and solvers so that they can work together.

Changing an application code to use the proposed LISI
would also require extensive application code changes and
handling a new learning curve, but the intent is that the
change would only need to be made once, and afterwards
substituting new solvers do not require modifying the base
code.

2.2 Requirements

For usage in modern HPC applications, an interface must
satisfy some minimal requirements. Those include:

Parallelism. Distributed-memory parallelism is still the
only architecturally scalable system, and is the most com-
monly used approach. This requires partitioning a global
data object (the coefficient matrix A and right hand side
vector b) across multiple memory spaces. Many current
HPC linear solver packages use a block row partitioning on
the linear system among multiple processors, correspond-
ing to a domain decomposition of the unknowns. Some
partitioning concepts have become standard for dense (fully
populated) arrays, such as cyclic, block cyclic, and arbitrary
rectangular multi-dimensional block decomposition [23].
Unfortunately no standard semantics exist yet for express-
ing the partitioning of sparse linear systems, which is part of
the reason for the complexity of exchanging solver libraries
for an application.

Multilevel method support. Multilevel [37] (including
multigrid and some multipole) methods are the only widely
available and applicable solvers that have proved scalable
in practice. Multilevel solvers such as HYPRE typically in-
volve alternating between grids of different refinement, and
this entails supporting re-entrancy at least in any implemen-
tation of a common LISI. Multilevel methods typically use
different solvers on different levels and it may be more effi-
cient to use different solvers for sub-domains solved in par-
allel on the same level.



User-supplied linear operators. Increasingly often sci-
entific applications do not explicitly create a data structure
for the linear system’s coefficient matrix and right-hand side
vector. Iterative methods based on Krylov subspaces typi-
cally only require the results of matrix-vector products, and
in the case of preconditioning, the result of solving a related
linear system. This opens the opportunity for “matrix-free”
solvers where the application is required to perform matrix-
vector products and preconditioner solves, either via call-
backs or by providing a function pointer to the linear solver
package. For nonlinear systems, Newton-Krylov solvers
[29] use a similar approach and have been proved robust,
accurate, and scalable. LISI needs to allow the application
itself to provide the matrix vector products, and/or the pre-
conditioner operations.

Language interoperability. Most scientific HPC simula-
tions are written in Fortran, but existing solver packages are
developed in C, C++ or Fortran. Several systems like SWIG
[19], Matlab’s MEX [14], CHASM [3], JNI [7], and f2py
[4] bridge between a specified target language and other lan-
guages. The relatively new Fortran 2003 standard [5] has a
C interoperability specification, although it has significant
limitations on the types used and does not handle the large
existing base of Fortran codes in use. Microsoft’s .NET, and
particularly the the Common Language Infrastructure (CLI)
and The Common Language Runtime (CLR) [9] in princi-
ple also address language interoperability by first translat-
ing code to a common intermediate representation. Lan-
guage interoperability also is provided by Babel, which gen-
erates stubs and skeletons for different languages based on
interfaces definition in SIDL. Babel supports C, C++, For-
tran77, Fortran90, Python and Java being combined in a sin-
gle application.

3 Related Work

Several efforts (e.g., [1] [12] [27]) have designed shared
abstract interfaces for linear solver packages, but none have
yet achieved wide acceptance from the HPC community.

Equation Solver Interface. The Equation Solver
Interface (ESI) [1] effort started before SIDL was designed
and its interfaces were written in C++. ESI development
stopped around year 2001 at least in part because of a lack
of community support, but it has provided a start point
for other interface design efforts. ESI specified interfaces
for Matrix, Vector, Parameter, Operator, Preconditioner
and IndexSpace. It was a top-down effort which started
from a general mathematical expression of linear systems,
rather than beginning with a particular existing package
and trying to generalize it. A major reason ESI was not

successful was because it was premature: no large set of
applications had a driving need for it, there was no practical
language-independent way of expressing the interfaces, and
there was not enough sustained community involvement.

The TOPS CCA interface. TOPS [11] researchers pro-
posed a TOPS CCA interface [12] and a TOPS Solver
Component at SC05. It provides direct access to vir-
tually all of the TOPS linear and nonlinear algebraic
solvers including geometric and algebraic multi-grid. The
TOPS interface separate the interface into two parts:
TOPS.System and TOPS.Solver. Solver users need to im-
plement TOPS.System interface which defines the algebraic
problem. TOPS.Solver provides the solver capability such
as initializing the solver by passing in command line argu-
ments, setting up the parameters, and then solving the lin-
ear system from TOPS.System. TOPS effort is a bottom
up approach, it reflects the requirements of TOPS solvers in
detail, and some methods have implicit assumption on how
underneath data is distributed. This interface is not gen-
eral enough for most of parallel solvers which are currently
widely used.

Ames CCA interface. Ames laboratory works on a CCA
interface for Sparskit[27]. SPARSKIT is a serial toolkit for
sparse matrix computations and is written in FORTRAN
77 and has a cumbersome interface. Componentizing it
enables its wider usage in modern applications and facil-
itates further SPARSKIT enhancements. This effort also
uses bottom-up design fashion, and the interface is mainly
for SPARSKIT, and since SPARSKIT is a serial solver, the
interface doesn’t address parallelism. It cannot be directly
used for HPC scalable solver packages. The interface is also
tightly coupled with the underlying library, and it cannot be
used for other libraries as a general interface.

4 CCA/SIDL

The CCA was started in 1997 as an effort to bring the
component programming model to scientific users, and the
CCA is a specification of the component programming pat-
tern and the interface the components see to the underlying
support substrate, or framework [16]. In the CCA, a com-
ponent is defined as a collection of ports, where each port
represents a set of functions that are publicly available. A
port is described using SIDL [30] which is a programming-
language-neutral interface definition language. There are
two types of ports: provides ports and uses ports. The ports
implemented by a component are called provides ports and
other components may connect to use. The ports that a com-
ponent may connect to and use are named as uses ports.
CCA uses this provides-uses design pattern [25] to define
interactions between the components.



CCA provides a framework which facilities:

• Reusable components

• Components assembling

• Language interoperability

• Dynamical switching components with the same inter-
face and different implementation.

The agreement on the ports functionality must be made
between multiple software development teams to facili-
tate seamless component composition. Designing the CCA
common interface is the crucial part on component reusabil-
ity, since one component is considered as reusable only if it
implements some publicly available interface. The LISI de-
fines a minimal common set of functionalities among sparse
linear solver packages and is a basis for further discussion
from interested parties. Successful CCA common interfaces
have been designed in other areas such as CCA distributed
array interface [23], TAU performance interface [35], and
TSTT mesh interface [13].

Babel [36] addresses language interoperability issues to
enable software developed in different languages to com-
municate using Interface Definition Language (IDL) tech-
niques. An IDL describes the calling interface (but not
the implementation) of a particular software library. The
Babel team has developed and maintains SIDL [30] which
addresses unique needs of parallel scientific computing by
supporting complex numbers, dynamic multi-dimensional
arrays, and the parallel communication directives required
for parallel distributed components. Babel uses this inter-
face description to generate “glue code” that allows a soft-
ware library implemented in one supported language to be
called from any other supported language. Currently, Babel
supports Fortran 77, Fortran 90, C, C++, Python, and Java
(uses ports only).

CCA component allows to be reused and assembled to
the application, but it is forced to specify uses ports and
provides ports in the implementation in which those infor-
mation must be hard-coded.

5 Design issues and requirements

Design of a minimal common set of interfaces is not triv-
ial, especially when it spans multiple packages. A flexible
interface will have to address multiple systems’ problems
and requirements.

5.1 Interface Complexity

The interface tries to capture the interactions between
HPC applications and solvers. The goal is to hide the un-
derlying implementation as much as possible while preserv-

ing functionality and allowing the user flexibility. Extract-
ing commonalities among solver packages is useful to find
the common interface. For freely available sparse linear
solvers, three phases are commonly used:

a) Setup of linear system data structures

b) Setup of interlinked options/choices/algorithms/param-
eters

c) Solve

Setting up the sparse matrix, right hand side vector, solu-
tion vector through explicitly pass-in arrays in which the
interface is easy to define. However, auxiliary data struc-
tures such as preconditioners, elimination trees for direct
solvers, and multifrontal stacks vary among the packages.
They are hard to define a single interface for. Details that
need to be considered include parameters such as precon-
ditioner method, fill level, drop tolerances, stop tests, and
restarts in Step 2. The solve itself is relatively easy to de-
fine the interface for, but a common interface on post-solve
phase needs careful consideration such as how the statistics
information gets returned and in what order.

5.2 Usage Complexity

The way the linear solver is used by HPC applications
varies based on application requirements. There are at least
five different use cases:

a) One time solve: the solver is only called once with one
linear system and one right hand side (RHS) vector, the
solution vector is returned when the solve phase is fin-
ished. In this case the linear system and RHS vector
need not be stored for reuse.

b) Precompute reused objects such as LU factorization
and symbolic factorization for sparse direct solver and
ILU factors for preconditioned iterative solve. Partially
reusable objects need to be stored for reuse.

c) Multiple solves with the same A and multiple RHS vec-
tors. Both A and preconditioner are reused and RHSs
are usually presented one after another. The interface
needs to specify how the multiple RHSs are passed in,
e.g. through a multi-dimensional SIDL array or set up
one by one after each solve.

d) Multiple solves with the different coefficient matrices A.
Although A differs on each solve, the A typically has the
same sparsity pattern as the first solve, and the precon-
ditioner may be still reusable. Computing the precondi-
tioner is often the most expensive part of a linear solve.



e) Recursive calls to the solver. This case is mainly for
multi-level solvers. Recursion must be addressed in the
interface. There are two ways to identify the LISI’s role
in this context: one is that LISI will be treated as the
interface to single solver and a multi-level solver devel-
oper can use LISI on each level solve. The other is where
the LISI handles the multi-level solver by itself. In this
case an identifier may need to be provided by the appli-
cation for each level of the grid.

5.3 Input Data Structure Complexity

Unlike the dense matrix, sparse matrices are often stored
in some compact ways to reduce the storage require-
ment. The well-known formats are: coordinate format
(COO), compressed sparse row format (CSR), compressed
sparse column format (CSC), modified sparse column for-
mat (MSC), modified sparse row format (MSR), etc. Some
existing tools [38] provide the conversion between differ-
ent sparse data formats, however none of the sparse linear
solver packages provides the support for all formats.

5.4 Parallelism

Specifying how data is divided across distributed mem-
ories may need to be addressed in the interface. The Dis-
tributed Array Descriptor (DAD) [23] effort within the CCA
is to design a common interface for specifying this, but it
currently only addresses dense arrays. Until a DAD is cre-
ated for sparse linear systems, the current proposed LISI
assumes that block row partitioning is used. With some ini-
tial reordering of the rows, this is the most commonly used
approach.

5.5 Matrix-free Interface

Many HPC applications use a linear solver by passing in
the linear system explicitly in the form of arrays, but in-
creasingly some high end HPC applications do not form
a linear system in array format explicitly. Especially for
adaptive griding and extremely large problems with limited
memory this can be more efficient, but the application user
is then responsible for computing matrix-vector products
and preconditioner application. Both Trilinos and PETSc
provide mechanisms to support matrix-free methods. Trili-
nos’s Epetra RowMatrix virtual class allows the application
developer to implement and create their own matrix data
type with a matrix vector product method. The newly cre-
ated matrix object can then be passed to AztecOO solver
to get the solution. PETSc allows application developer to
create a new Matrix type with user-provided matrix-vector
product routine, and associates the Matrix and this routine
through MatShellSetOperation. LISI needs to provide this
functionality.

5.6 Uses-Provides

As we discuss in Section 4, CCA deploys a uses and
provides design pattern which requires functionality sepa-
ration among the HPC solvers and applications. Since LISI
describes the interaction between these two parties, how to
choose the uses ports and provides ports is needed to care-
fully think about. Figure 1 shows three cases.

Figure 1. Possible choices for a uses-
provides design pattern for sparse linear
solvers

(a) Application has uses ports, solver has provides ports.
The advantage is that the same solver instance can be
used repeatedly and multiple applications can use the
solver simultaneously. The disadvantage is that linear
system must be explicitly passed into the solver. Ames
CCA interface chooses this way to design their Sparskit
CCA wrapper.

(b) Application has provides ports, solver has uses ports.
The advantage is that matrix free method can be sup-
ported in which solver can use the matrix-vec product
from application side to solve the linear system in a
matrix free manner. The disadvantage is that applica-
tion developer may not want to write all of the provides
ports required since it makes them responsible for some
burdensome CCA coding.

(c) In hybrid use pattern. Both application and solver have
uses and provides ports. The provides port in appli-
cation can provide some function such as matrix-vec
product. TOPS interface use this hybrid provides-uses
pattern, but in a way application provides the setup of
linear system and solver provides the solve functional-
ity. In their design, application always has to implement
some services even matrix-free method is not required.
Our design chooses the application provides port that
only has matrix-free function and the rest of functions
are provided by the solver for easy usage of solver.



5.7 Minimal Changes

To minimize the overhead of using LISI with current ap-
plications, interface itself must be as small as possible and
not require extensive changes in the application code. How-
ever, some applications are tightly coupled with a particular
library and would require more extensive restructuring.

6 Design Decision

Supporting the interface functionality requirements re-
quires some technical issues to be resolved.

6.1 Multiple or single interface?

In CCA, the interface is exposed to other codes via a
Port. LISI defines only one interface (SparseSolver) to be
publicly accessible, but there are two ways to define how
the data are passed to SparseSolver interface:

• Matrix data is the language build-in primitive type.
In this way other components are easy to prepare the
call once they have the linear system in their hands
as multi-arrays. Most of sparse linear solver package
written in Fortran accepts multi-array as the input pa-
rameters.

• Matrix data is object which is described as the sepa-
rated interfaces such as Matrix and Vector interface.
In this way, the solver component will have a good
data encapsulation through object composition, but it
adds a burden on using the interface, since they have
to have two steps instead one to call the interface: form
the pass-in object and pass the object to interface.

We decide to choose the first one since SparseSolver is a rel-
atively simple interface and the data complexity is low, no
need to introduce another complexity through object com-
position.

6.2 R-array or SIDL array?

Both r-arrays (“raw arrays”) and normal SIDL arrays
are supported by Babel, but the use of r-arrays is more re-
stricted: it only has the in and inout parameter modes; for
multi-dimensional array, only column-major order is sup-
ported; NULL is not allowable; the lower index is always
0; it can be used for arrays of SIDL int, long, float, double,
fcomplex, dcomplex types.

From our interface requirement, we do not need out pa-
rameter, and we will not use multi-dimensional array since
our interface expects the assembled linear system in the
form of three one-dimensional arrays. Indexing starting at 0
can be treated at the component implementation by shifting

by one, and R-array supported data types are sufficient for
the real world application. Then r-array limitations may not
hinder the LISI design, and compared with normal SIDL
arrays, r-array does have advantages:

• More traditional access in each supported language.

• Developers need less or no code to translate between
their array data structure and r-array data structure.

• SIDL generated APIs can have signatures similar to
legacy APIs

• Less performance overhead because r-arrays can avoid
calls to malloc and free.

Most importantly using the r-array instead of SIDL ar-
ray as our parameter can reduce the component developer’s
learning overhead for SIDL array.

6.3 Single or multiple methods for param-
eters

A single port can have many methods defined, so the de-
sign issue is whether or not to provide separate get and set
methods for each parameter. To avoid repeated parameter
passing, LISI uses separate methods to set them, such as
number of local rows, number of local nonzeros, and start-
ing local row’s number in the global numbering scheme.
The methods are setStartRow, setLocalRows, setLocalNNZ
and setGlobalCol, so that methods such as setupMatrix, se-
tupRHS and doSolve need not provide those parameters on
each call. This also avoid the parameter setting conflict by
mistake.

6.4 Simple invocation pattern

LISI puts uses ports on the application side, and provides
ports on the solver side. This seems to be a more natural
approach to application users who look at solvers as utilities
provided to their main code. This also makes the application
side easier and less embedded into CCA implementations
by simply invoking the interface to pass the linear system
and RHS and get the result back. As Section 5.6 explained,
this choice is somewhat arbitrary and there are arguments
for reversing the uses/provides roles chosen by LISI.

6.5 Generic or specific parameter-setting
methods?

Sparse direct solvers tend to have a shared terminol-
ogy, e.g. Markovitz pivoting parameter, drop tolerance, etc.
Similarly for sparse iterative methods, there are levels of
fill in the preconditioner, stopping test, stopping tolerance,



maximum allowed iterations, etc. So an interface can be de-
fined with specifically name methods for those. However,
solvers vary in the amount of parameter control available
to the application, and may have unique or unusual param-
eters to be set. Even when terminology matches different
interpretations are taken by different solver libraries. For
instance “stopping tolerance” can mean an absolute resid-
ual norm test or a residual measure normalized by the initial
residual. LISI handles this by making the parameter setup
methods as generic as possible, instead of giving a fixed
method name for each parameter such as setSolverMethod
and setPreconditioner.

7 Proposed LISI

The SIDL specification in code listing 7.2 implements
the design decisions made in Section 6 and attempts to sat-
isfy most of the requirements described in Section 5

The interface itself does not provide an implementation,
but does need to mediate between an application code and
solver libraries. Since the interface is written in SIDL, im-
plementations can be written with different languages and
even with different languages for a paired uses/provides
port. LISI does not provide solvers itself and is just an in-
terface and adapter implementation to them.

7.1 Design Architecture

Figure 2 shows LISI interface’s role in the HPC applica-
tion, it sits between native sparse solver packages and ap-
plication codes, along with Babel generated client stub for
muti-language support. The arrows indicate the calling data
flow. By introducing LISI layer, the goal of decoupling is
achieved.

Figure 2. Interface Design architecture

7.2 Description

This package is an interface for both iterative and di-
rect solvers. To avoid name conflict, the interface is put

in package lisi. The SparseSolver interface extends from
gov.cca.Port and it is implemented by solver components
to provide the solver functionality. Enum type SparseS-
truct allows the input the array format to be chosen among
CSR, COO, MSR and VBR, etc. setStartRow, setLocal-
Rows, setLocalNNZ and setGlobalCols set the data distribu-
tion variable which are needed for the other methods. The
setupMatrix is overloaded by the different input data for-
mat and array offset. In the implementation, it works as
an adapter to convert the input data format to the libraries’
internal data structure and frees up users from doing it by
their own. setRHS sets up the RHS vector. The rest set
of setXXX methods provide the generic way to setup the
internal solver parameter, and key is the parameter name,
the agreement on the key’s name should be associated with
the LISI, currently key is the list of solver, preconditioner
tol, maxits, etc. The solve invokes the internal solver and
returns the solution vector in parallel. As for matrix-free
functionality, LISI has a MatrixFree interface which pro-
vides matrix-vector product method. The Enum type ID is
used here to identify if the method is called for solver or
preconditioner. Since MatrixFree interface will be imple-
mented by application side, we make the assumption that
data distribution information is already known.

CCA LISI SIDL Interface

package lisi version 0.1
{

enum SparseStruct

{ CSR, COO, MSR, VBR, FEM,}

enum ID

{ MATRIX, PRECONDITIONER,}

interface MatrixFree extends gov.cca.Port{

int matMult(in ID id,

in rarray<double,1> x(length),

inout rarray<double,1> y(length),

in int length);

}

interface SparseSolver extends gov.cca.Port{

int initialize(in long comm);

int setBlockSize(in int bs);

/* Block row partitioning */

int setStartRow(in int startrow);

int setLocalRows(in int rows);

int setLocalNNZ(in int nnz);

int setGlobalCols(in int cols);

int setupMatrix[few_args](

in rarray<double,1> Values(NNZ),

in rarray<int,1> Rows(NNZ),

in rarray<int,1> Columns(NNZ),

in int NNZ);

int setupMatrix[media_args](

in rarray<double,1> Values(NNZ),



in rarray<int,1> Rows(RowsLength),

in rarray<int,1> Columns(NNZ),

in SparseStruct DataStruct,

in int RowsLength, in int NNZ);

int setupMatrix[large_args](

in rarray<double,1> Values(NNZ),

in rarray<int,1> Rows(RowsLength),

in rarray<int,1> Columns(NNZ),

in SparseStruct DataStruct,

in int RowsLength,

in int NNZ, in int Offset);

int setupRHS(

in rarray<double,1>

RightHandSide(NumLocalRow),

in int NumLocalRow, in int nRhs);

int solve(

inout rarray<double,1> Solution(NumLocalRow),

inout rarray<double,1> Status(StatusLength),

in int NumLocalRow,in int StatusLength);

int set(in string key, in string value);

int setInt(in string key, in int value);

int setBool(in string key, in bool value);

int setDouble(in string key, in double value);

string get_all();

}

}

The proposed LISI leaves some open questions on the
interface design, and as discussed in Section 5, some issues
aren’t addressed. The current LISI is the core part and pro-
vides a basis for discussions in the HPC solver community,
rather than a final specification.

8 Implementation and testing

To demonstrate the validity and usability of LISI and to
get initial estimates on the overhead introduced by using it,
LISI was implemented with each of Trilinos, PETSc and
SuperLU. The tests were run on the Ccaffeine [15] CCA
framework. In CCA, a component corresponds to a func-
tional decomposition, while the parallelism comes from a
domain decomposition. So one component can span mul-
tiple processors, and all of its instances are called cohorts.
Figure 3 is a rough schematic of the design of experiment
which has two parts:

[a ] A parallel mesh data generator sets up the finite
difference operator matrix for 5-point centered dif-
ferences on the unit square, with Dirichlet boundary
conditions given around the boundary. The generator
solves the general linear PDE

uxx + uyy − 3ux = f

Figure 3. Test architecture

where f is function of x and y. In our test,

f = (2 − 6 ∗ x − x ∗ x) ∗ sin(x)

The coefficient matrix A, RHS vector b, and solution
vector x are divided conformal into block rows, one
per processor. Mesh data files are written out on each
compute node locally for faster data input.

[b ] Solve the linear system in parallel using standard
SPMD programming. The application component in-
teracts with the solver component on each process
through provides/uses interface and components inter-
act with their own cohorts using the Message Passing
Interface (MPI)[24] or an equivalent message-passing
mechanism. The application component sends the data
and user specified solver parameters to the solver com-
ponent through the proposed interface, the solver com-
ponent solves the given linear system, and returns its
own portion of the overall solution vector back to local
application component.

The test was conducted on a Linux cluster with 128 com-
pute nodes, each with dual AMD 2.0 Ghz Opetron proces-
sor and 4 Gbytes of memory. Figure 4 shows how solver
components can be switched over with the same driver com-
ponent. In practice, only one of three links would show up
in the component diagram. Because the testing was pri-
marily to validate LISI and provide reference implementa-
tions, tests were run on only 1, 2, 4 and 8 processors with
a coefficient matrix having 199200 non-zeros. The timing
results are collected for ten runs for each experiment and
a mean value is picked. Figure 5 shows the comparison
of CCA component execution time (o line) with NonCCA
component execution time (+ line) for PETSc, Trilinos and
SuperLU solver respectively. The overhead introduced is
so small that two curves are almost overlaid on each other.
This demonstrates low performance impact when LISI in-
terface layer is added, which is most important metric in
HPC application.



Figure 4. LISI Demo
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Figure 5. Comparison for PETSc, Trilinos and
SuperLU components

To show the constant overhead is added by CCA frame-
work, the PETSc solver component was tested on 8 pro-
cessors with different sizes of the linear system, shown in
Table 1. The fourth column in Table 1 has the difference
of the second and third column and percentage of the dif-
ference by the second column. The overheads range from
0.016s to 0.047s, which are very small, and are considered
as constant.

The overhead percentage shows how the framework
overhead affects the whole computation, and it decreases
when the problem size increases. This is because we have
the constant number of interface calls in the program, the
overhead time would be constant no matter how large the
problem size is, but with increased problem size, more com-
putation time is typically needed both in time per iteration
and the numbers of iterations.

nnz CCA(s) NonCCA(s) Overhead(s)/(%) Iters
12300 0.086 0.070 0.016/18.61 36
49600 0.189 0.144 0.045/23.73 67

199200 0.475 0.428 0.047/9.86 108
448800 1.283 1.265 0.018/1.36 165
798400 2.585 2.562 0.023/0.90 221

Table 1. Computing Times of PETSc Compo-
nent with and without the LISI interface

9 Conclusion and Further Work

In this work, we have conducted investigation on widely
used parallel sparse linear solver packages and tried to ab-
stract a high level common interface among them. Design-
ing the minimal common set of interface is not trivial, es-
pecially one needs to think across multiple packages. We
examed the issues involving in the designing work, and pro-
pose the first version of LISI. We considered on how linear
system characteristics, solver parameters and auxiliary data
are passed through the interface; took into account variable
usage scenery on how the interface is used; discussed on
supporting the different data structures, parallelism, matrix-
free methods, recursion and some specific requirements
from CCA specification on how to choose the uses & pro-
vides ports. For easy using interface, we designed it as a
single interface package, picked R-array which is more nat-
ural to the modern language programmer as array param-
eter type, extracted the common parameters into separated
methods to avoid the potential conflict settings and had the
generic parameter-setting methods to make the interface ac-
commodate both iterative solvers and direct solvers. Proto-
typing and some simple experiments were done to indicate
the small overhead from introducing the new layer on the
existed packages. Reader may refer to the full paper [34]
for design details.

We only design a top level interface for the HPC solvers,
but there are still more issues that cannot be handled on this
interface such as multi-level problem. And for some func-
tionality such as matrix-free method, we only proposed the
interface but haven’t done real application based implemen-
tation, some updates may be introduced once it’s fully im-
plemented.
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